산화수 변화 - 전자를 잃으면 산화이고 얻으면 환원
산화(oxidation)는 분자, 원자, 이온이 전자를 잃고, 산화수(oxidation number)가 증가하는 것을 말한다. 전기적으로 중성인 분자 혹은 원자가 전자(electron)를 잃으면 양이온이 된다. 양성자와 전자의 개수가 같은 원자는 전기적으로 중성이며, 그 때 산화수는 0 이다. 만약에 그 원자가 자발적으로 전자 1개를 내 놓았든지 혹은 외부의 힘에 의해 전자 1개를 빼앗겼다면 그 원자는 더 이상 전기적으로 중성이 아니다. 결국 그 원자는 전자의 개수보다 양성자의 개수가 1개 더 많은 양이온이 된 것이며, 그 양이온의 산화수는 +1(원소기호 다음에 위 첨자로 +1 혹은 + 를 적어서 양이온임을 표기한다.)이다. 분자나 이온의 경우에도 같은 원리가 적용이 된다.
예를 들어 철(Fe)이 전자를 2개 잃으면 철 양이온(Fe2+, Fe++, 혹은 Fe(II)로 표기)이 되고, 그것의 산화수는 +2이다. 그 양이온이 전자를 1개 더 잃으면 (빼앗기면) 그것은 Fe3+ 혹은 Fe(III)으로 표기되는 3가 철 이온이 된다. 이와 같이 산화수가 0 에서 1 혹은 2로, 다시 2 에서 3으로 증가하는 것을 산화라고 표현한다. 반면에 전기적으로 중성인 원자가 전자를 얻거나 혹은 빼앗으면 전기적으로 음성을 띤 음이온이 된다. 예를 들어서 염소(Cl) 원자가 전자를 1개 얻는다면(혹은 다른 원자나 분자로부터 전자를 빼앗는다면), 결국에는 양성자 개수 보다 전자 개수가 많아 음이온이 된다. 염소 음이온은 보통 Cl- 혹은 Cl-1 로 표기하며, 그것의 산화수는 -1 이다. 이 경우처럼 전자를 얻어서 분자, 원자, 이온이 본래의 산화수보다 감소하는 경우는 환원(reduction)이라 한다.
금속이 산소를 얻으면 산화, 잃으면 환원
분자, 원자, 혹은 그것의 결합으로 이루어진 화학물질은 주변 환경 혹은 그 자신의 특성으로 인해서 산화되는 속도와 정도가 다르다. 많은 금속은 전자를 쉽게 잃어버리고 양이온으로 변한다. 그 양이온은 주변 환경에 따라 이온상태로 존재하거나 혹은 산소와 반응 혹은 산소를 포함하는 다른 분자나 이온과 반응하여 금속산화물로 변신을 한다. 예를 들어 금속 철(Fe)을 포함하고 있는 철광석(iron ore)은 철 산화물이 다른 광물과 함께 섞여 있는 돌덩어리이다. 철이 산소와 반응하여 철 산화물이 형성되고 다른 물질과 섞인 뭉치가 철광석인 것이다. 철을 이용하여 각종 도구를 만들려면 철광석에 철을 뽑아내야 된다. 그 도구들에 페인트 칠과 같이 부식 방지 수단을 사용하지 않으면 금새 뻘건 녹이 슬어 버린다.
철광석에서 철을 추출하는 것은 철 산화물에서 철로 환원시킨 것이며, 뻘건 녹은 철이 철 산화물로 산화된 것이다. 철 산화물에서 산소를 제거하면 철이 되고, 철에 산소가 더해 지면 철 산화물이 되므로 산소가 제거되는 과정을 환원, 산소가 더 해지는 과정을 산화라 해도 된다. 산화수의 증감으로 산화 환원을 구별하기도 하지만 산소의 득과 실로 산화 환원을 구별할 수 있다는 말이다. |